

Face modeling (part I) Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2022

Why Human Faces?

- Face is an important subject.
- We are humans.
- Many commercial applications.
- Lots of useful tools
- 3D data: geometry-based synthesis.
- 2D/3D Computer vision works for faces.

Image Composites

Sir Francis
Galton
1822-1911

Multiple Individuals

Composite
[Galton, "Composite Portraits", Nature, 1878]

The Power of Averaging

8-hour exposure

© Atta Kim

Average Images in Art

"60 passagers de $2 e$ classe du metro, entre 9h et 11h" (1985)
Krzysztof Pruszkowski

"Spherical type gasholders" (2004) Idris Khan

"100 Special Moments" by Jason Salavon

Little Leaguer

The Graduate

Kids with Santa

Why blurry?

Object-Centric Averages by Torralba (2001)

Manual Annotation and Alignment

Average Image

Computing Means

Two Requirements:

- Alignment of objects
- Objects must span a subspace

Useful concepts:

- Subpopulation means
- Deviations from the mean

Images as Vectors

Vector Mean: Importance of Alignment

How to align faces?

Students and staff from Technical University of Denmark

Shape Vector

Landmark annotation

Appearance Vectors vs. Shape Vectors

Slide by Kevin Karsch

Average Face

1. Warp to mean shape
2. Average pixels

Objects must span a subspace

Subpopulation means

Examples:

- Male vs. female
- Happy vs. said
- Average Kids
- Happy Males
- Etc.
- http://www.faceresearch.org

Average female

Average male ${ }^{7}$

Average Women of the world

Several issues: 1 . country \neq race. 2. demographic diversity is lost. 3. bias in data source

Average Men of the world

CAMBODIA

MONGOLIA

AFGHANISTAN

BURMA (MYANMAR)

GERMANY

Several issues: 1 . country \neq race. 2. demographic diversity is lost. 3. bias in data source

Deviations from the mean

Deviations from the mean

Extrapolating faces

- We can imagine various meaningful directions.

Slide by Kevin Karsch

Manipulating faces

- How can we make a face look younger/older, or happy/sad, etc.?
- http://www.faceresearch.org/demos/transform

Back to the Subspace

Linear Subspace: convex combinations

Any new image X can be obtained as weighted sum of stored "basis" images.

$$
X=\sum_{i=1}^{m} a_{i} X_{i}
$$

Our old friend, change of basis! What are the new coordinates of X ?

The Morphable Face Model

The actual structure of a face is captured in the shape vector $\mathbf{S}=\left(x_{1}, y_{1}, x_{2}, \ldots, y_{n}\right)^{\top}$, containing the (x, y) coordinates of the n vertices of a face, and the appearance (texture) vector $\mathbf{T}=\left(R_{1}, G_{1}, B_{1}, R_{2}, \ldots, G_{n}\right.$, $\left.B_{n}\right)^{\top}$, containing the color values of the mean-warped face image.

Shape S

Appearance T

The Morphable face model

Again, assuming that we have \boldsymbol{m} such vector pairs in full correspondence, we can form new shapes $\mathbf{S}_{\text {model }}$ and new appearances $\mathbf{T}_{\text {model }}$ as:

$$
\begin{aligned}
& \mathbf{S}_{\text {model }}=\sum_{i=1}^{m} a_{i} \mathbf{S}_{i} \quad \mathbf{T}_{\text {model }}=\sum_{i=1}^{m} b_{i} \mathbf{T}_{i} \\
& s=\alpha_{1} \cdot(2)+\alpha_{2} \cdot\left(\alpha_{3} \cdot \alpha_{4} \cdot+\ldots=\mathbf{S} \cdot \mathrm{a}\right. \\
& t=\beta_{1} \cdot\left(\boldsymbol{v}^{2}\right)+\beta_{2} \cdot\left(\beta_{3}\right)+\beta_{4} \cdot(\boldsymbol{y})+\ldots=\mathbf{T} \cdot \beta
\end{aligned}
$$

If number of basis faces \boldsymbol{m} is large enough to span the face subspace then:
Any new face can be represented as a pair of vectors

$$
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)^{T} \text { and }\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)^{T} \text { ! }
$$

Issues:

1. How many basis images is enough?
2. Which ones should they be?
3. What if some variations are more important than others?

- E.g. corners of mouth carry much more information than haircut

Need a way to obtain basis images automatically, in order of importance!

But what's important?

Principal Component Analysis

Given a point set $\left\{\overrightarrow{\mathbf{p}}_{j}\right\}_{j=1 \ldots P}$, in an M-dim space, PCA finds a basis such that

- coefficients of the point set in that basis are uncorrelated
- first $r<M$ basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) in the approximation (over all bases with dimension r)

PCA via Singular Value Decomposition

EigenFaces

First popular use of PCA on images was for modeling and recognition of faces [Kirby and Sirovich, 1990, Turk and Pentland, 1991]

- Collect a face ensemble
- Normalize for contrast, scale, \& orientation.
- Remove backgrounds
- Apply PCA \& choose the first N eigen-images that account for most of the variance of the/ data.

First 3 Shape Basis

Principal Component Analysis

Choosing subspace dimension $r:$

- look at decay of the eigenvalues as a function of r
- Larger r means lower expected error in the subspace data approximation

Using 3D Geometry: Blinz \& Vetter, 1999

CARICATURE

MORE MALE

WEIGHT

FEMALE

HOOKED NOSE

Using 3D Geometry: Blinz \& Vetter, 1999

Using 3D Geometry: Blinz \& Vetter, 1999

Face + Internet Images

Photobio

$\bigcirc \bigcirc \bigcirc$ George Bush - Google Searc x

$\cup \Omega$
George Bush

$$
\text { About } 409,000,000 \text { results (} 0.49 \text { seconds) }
$$

๑) Q

Search

Everything
Images
Maps
Videos
News
Shopping
Books
More

All results
By subject

Any size
Large
Medium
Icon
Larger than..
Exactly...

Any color
Full color
Black and white
ㅁ■ㅁ

Related searches: george bush sr george h w bush george bush face george bush finger george bush confused

禁

(2)

Photobio

$\bigcirc \bigcirc \bigcirc$ George Bush - Google Searc x

Everything
Images
Maps
Videos
News
Shopping
Books
More

All results
By subject

Any size
Large
Medium
Icon
Larger than...
Exactly...

Any color
Full color Black and white

Related searches: george bush sr george $\mathrm{h} w$ bush george bush face george bush finger george bush confused

Photobio

$\bigcirc \bigcirc \bigcirc$ George Bush - Google Searc x

Everything
Images
Maps
Videos
News
Shopping
Books
More

All results
By subject

Any size
Large
Medium
Icon
Larger than..
Exactly...

Any color
Full color Black and white $\square \square \square \square$
$\square \square \square \square$
$\square \square \square$

Related searches: george bush sr george h w bush george bush face george bush finger george bush confused

chatenoes

Non－rigid（facial expressions，age．．．）
Occlusions（hair，glasses ．．．）

Arbitrary lighting，pose

Different cameras，exposure，focus ．．．

But：there are many photos！

447 pictures Dec 24， 1990 to Jul 4， $2011 \quad 637.2 \mathrm{MB}$ on disk

Walking in the Face-graph!

Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, Steven M. Seitz. "Exploring Photobios." ACM Transactions on Graphics 30(4) (SIGGRAPH), Aug 2011.
http://vimeo.com/23561002

Image registration

Kemelmacher, Shechtman, Garg, Seitz, Exploring Photobios, SIGGRAPH'11

Image registration

Fiducial points detection
Everingham et al. '06

Estimate 3D pose

Template 3D model

3D transformed photos

before
after

-••

Represent the photo collection as a graph

Similarity
between
2 photos

3D Head
Pose
similarity
Facial

Expression
similarity
:---:
similarity

Represent the photo collection as a graph

Similarity
between
2 photos

3D Head
Pose
similarity

Facial	Time		
- Expression			
similarity		$~ \bullet$	similarity
:---:			

Represent the photo collection as a graph

Dreambit

Transfiguring Portraits

Ira Kemelmacher-Shlizerman*
Computer Science and Engineering, University of Washington

Figure 2: Illustration of our system. The system gets as input a photo and a text query. The text query is used to search a web image engine. The retrieved photos are processed to compute a variety of face features and skin and hair masks, and ranked based on how well they match to the input photo. Finally, the input face is blended into the highest ranked candidates.
https://www.youtube.com/watch?v=mILLFK1Rwhk

Dreambit

Me with "curly hair"

Illumination-aware Age Progression

CVPR 2014

Ira Kemelmacher-Shlizerman, Supasorn Suwajanakorn, Steven M. Seitz

3 years old

5-7

14-16

26-35

Illumination-aware Age Progression

Image-Based Shaving

http://graphics.cs.cmu.edu/projects/imageshaving/

The idea

Differences ???

Processing steps

68 landmarks

Some results

Take-home Message

- Alignment (2D and 3D): 3D is better than 2D.
- Shape + Texture representation.
- Subpopulation mean \bar{x} and deviation Δx
- 3D data and 3D shape representation helps!
- Easy to change the viewpoint.
- Standard face pipeline:

Given: Input Image
Step 1: warp it to canonical pose (2D or 3D)
Step 2: Calculate distances between faces OR apply image manipulation operations.
Step 3: Unwarp the result back to the original image
Step 4: Post-processing (e.g., Poisson blending)

Thank You!

16-726, Spring 2022
https://learning-image-synthesis.github.io/sp22/

